RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017 FIRST YEAR [BATCH 2016-19]

ELECTRONICS (General)

Paper: II Time : 11 am – 1 pm Full Marks: 50

	Answer <u>any five</u> questions of the following:	[5 X 10]
1.	a) Define the following terms: Degenerative feedback and regenerative feedback.	2
	b) Give a comparative study of positive and negative feedback.	3
	c) Derive an expression between open-loop and close-loop voltage gain for a feedback amplifier	
	From that expression obtain the condition for which the amplifier will act as an oscillator.	3+2
2.	a) How many feedback topologies are there? Mention names of those classes.	2
	b) Discuss any two feedback topologies with their schematic diagrams.	3+3
	c) What type of feedback is used in an OP-AMP adder circuit? Justify your answer.	2
3.	a) "Negative feedback reduces the gain of an amplifier. Still this type feedback is widely used.	,,
	Why?	3
	b) Compare ideal and practical properties of an OPAMP.	3
	c) Define and explain CMRR. Obtain its expression in terms of common-mode gain and	d
	difference signal gain.	4
4.	Write short notes on <u>any two</u> of the following:	2 X 5
	a) Class AB amplifier.	
	b) Offset null adjustment in OPAMP.	
	c) Use of OP-AMP as differentiator and integrator.	
	d) Hartley oscillator.	

: 26/05/2017

- 5. a) Design a non-inverting amplifier using OPAMP. How a unity gain buffer can be realised from the same. Define virtual ground. 3+2+1
 - b) Obtain an expression for the output voltage for the following circuit:

		oscillator high when piezoelectric crystal is used?	2+1
	b)	Discuss working principle of phase-shift oscillator with the help of a schematic diagram.	
		Obtain an expression for frequency of oscillation of the oscillator.	5+2
7.	a)	State the advantages of crystal oscillator.	2
	b)	State the working principle of a Schmitt trigger. Obtain the hysteresis voltage for the circuit.	4+2
	c)	An OPAMP inverting amplifier has an input resistor of $10K\Omega$ and a feedback resistor of $50K\Omega$.	
		If the input voltage is 1V, find the output voltage and the input current.	2
8.	a)	Design an astable multivibrator circuit using IC 555. Discuss its principle of operation. Obtain	
		an expression for duty cycle of the multivibrator.	7
	h)	Discuss how a square wave can be generated from the astable mutlivibrator	3

6. a) What is meant by frequency stability of an oscillator? Why is the frequency stability of an

____×___